Lecture 15 Molecular Orbitals for Diatomic Molecules

Solution will involve **molecular orbitals** - similar to atomic orbitals but centred around all of the nuclei in molecule. Each defined by sets of quantum numbers, with electron probability density determined by ψ^2 , where ψ = molecular wave function.

Approximate method:

At any moment, electron near one nucleus - approximate behaviour like electron in atomic orbital for that atom. Over time - electron associated with other nuclei in molecule. Therefore construct molecular orbitals (m.o.'s) by forming:

It is this, LCAO, method which we will use to construct m.o's.

Simplest example - H₂: two H atoms H_A and H_B

Only two a.o.'s $(1s_A, 1s_B)$ to form linear combinations.

General rule:

So we can only construct 2 m.o.'s for H_2 - and these are:

$$\psi_b$$
 = 1s_A + 1s_B and ψ_a = 1s_A - 1s_B

i.e. the sum (ψ_b) and the difference (ψ_a) of the constituent a.o.'s.

Consider the electron distribution in each of these:

Bonding Interaction

Anti-Bonding Interaction

Consider in each case the INTERNUCLEAR REGION

Probability of finding electron there is:

```
\psi_b > 1s_A, 1s_B > \psi_a
```

Electron in this region attracted to BOTH nuclei, therefore most favourable position. Hence, electron in ψ_{b} will be at lower energy than in non-interacting a.o.'s, and electron in ψ_a will be at higher energy still.

> Thus an electron in $\psi_{\boldsymbol{b}}$ will hold the nuclei together, one in ψ_a will push them apart.

 ψ_b is a BONDING m.o., ψ_a is an ANTI-BONDING m.o.

By aufbau & Pauli principles - the 2 electrons go into ψ_b - with paired spins.

MO's for H₂ molecule

http://www.chemtube3d.com/orbitalsCO.htm

M.O.'s for homonuclear diatomics (A₂) for elements of first row of the Periodic Table

For Li₂, Be₂, B₂ etc., more complex than for H₂, HHe - more available a.o.'s - 1s, 2s, 2p. Are there restrictions on overlap?

(1) VALENCE electrons only - core electrons too close to nucleus, too tightly bound

(2) Most efficient overlap between orbitals of same energy, i.e. for homonuclear diatomics this means 2s/2s, 2p/2p (for heteronuclear diatomics - see later)

(3) SYMMETRY RESTRICTIONS

These are best shown pictorially

Let us see how this works for 2s and 2p orbitals.

BOND ORDER

By Lewis/V.B. theory - one pair of electrons = one bond. To be consistent, in M.O. theory, define BOND ORDER as follows: Bond order = [(No. of electrons in bonding m.o.'s) – (No. of electrons in antibonding m.o.'s)]/2

Thus, for H_2 , bond order = (2 - 0)/2 = 1 (i.e. a single bond - as expected)

Magnetic Properties of Molecules

All electrons paired - repelled by magnetic field - DIAMAGNETIC

One or more unpaired electrons - attracted into magnetic field - PARAMAGNETIC

H₂ is diamagnetic.

Use Aufbau, Pauli, Hund - just as in filling atomic orbitals

For p orbitals - three per atom. Define z-axis as molecular axis. Hence p_z orbitals can overlap in same way as s orbitals.

 p_x , p_y orbitals are perpendicular to axis, but can still interact

Side-to-side overlap forms T2p_x or y MO

Need to consider all possibilities (could be needed for heteronuclear diatomics)

Anti-Bonding Interaction

 $\psi_a = p_x - p_x \text{ or } \psi_b = p_y - p_y$

Side-to-side overlap forms TT*2px or y MO

m.o.'s derived from 2p a.o.'s:

1. p_x , p_y alike in all respects except orientation, so m.o.'s derived from them must be degenerate.

2. sideways (π) overlap is less efficient than end-on (σ), so π m.o.'s less bonding than σ

Note Hund's rule again! Bond order = (8 - 4)/2 = 2(double bond) and PARAMAGNETIC. V.B. theory could not explain paramagnetism. Lecture 16 begins here

MO energy level diagram for O₂ and F₂

MO energy level diagram for Li₂ through N₂

Inorganic Chemistry Chapter 2: Figure 2.17

© 2009 W.H. Freeman

MO energy level diagram for CO

HETERONUCLEAR DIATOMIC MOLECULES

Simplest would be HHe. Differs from H_2 in two ways: (1) A.O. energies for H, He different. He - greater nuclear charge, electrons more tightly bound. (2) Now three electrons to feed into m.o.'s.

For heteronuclear diatomics, m.o.'s formed symmetrically above and below AVERAGE energy of constituent a.o.'s

For HHe, bond order = (2 - 1)/2 = 1/2 i.e. v. wk. "1/2" bond - not formed under normal conditions - v. unstable.

Unpaired electron, PARAMAGNETIC.

Note for "He₂" - extra electron in antibonding m.o. therefore bond order = 0. Molecule does not exist - no force to hold atoms together. He is monatomic gas.

MO for Heteronuclear Diatomics: HF

MO's for CO: the contour plots and significance for Metal Carbonyls

